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Abstract
By virtue of the entangled state representation |ξ 〉〉, we solve the dynamics
of a generalized parametric amplifier whose Hamiltonian is composed of two
forced quantum oscillators plus a parametric down-conversion interaction in
the resonant case. The solutions and state vectors of the Schrödinger equation
are derived, of which the simplest solution is a squeezed coherent state. The
method of characteristics is employed.

PACS numbers: 03.67.Mn, 03.65.Ud

1. Introduction

Since the publication of the paper of Einstein, Podolsky and Rosen (EPR) in 1935 [1], arguing
the incompleteness of quantum mechanics, the conception of entanglement has become more
and more fascinating and important as it plays a central role in quantum communication and
quantum computation [2–5]. The two-mode squeezed state, generated from a parametric
down-conversion process (in a non-degenerate parametric amplifier) with the Hamiltonian
being [6]

H = ω0
(
a
†
1a1 + a

†
2a2

)
+ g

(
a
†
1a

†
2 exp(−i2ω0t) + a1a2 exp(i2ω0t)

)
(1.1)

has its idler-mode photon and signal-mode photon entangled with each other in the frequency
domain, i.e. the correlation between idler mode and signal mode gives rise to two-mode
squeezing. Some new relationships between squeezing and entangled state transformation
are further revealed in [7]. On the other hand, it has been shown that the forced quantum
oscillator subjected to a transient ‘classical’ driving force can generate the coherent states [8],
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then a question naturally arises: can we combine the mechanism of the parametric down-
conversion process and that of the forced quantum oscillator to directly produce a squeezed
coherent state? To put it another way, when two forced quantum oscillators are coupled by
some interactions which cause two-mode squeezing, what is the dynamic evolution? In this
work we shall study how the dynamics of a time-dependent generalized parametric amplifier
can be solved by virtue of the entangled state representation; the latter is constructed in
[9, 10]. By the generalized parametric amplifier, we mean that its Hamiltonian describes
a two-mode forced quantum oscillator with the parametric down-conversion interaction in
the resonant case. In section 2 we briefly review the entangled state representation |ξ 〉〉. In
section 3 the characteristic equation deduced from the Schrödinger equation of the generalized
parametric amplifier is solved, and its physical implementation is briefly discussed. The
elegance and the efficiency working in the |ξ 〉〉 representation lies in that the Schrödinger
equation is projected as a first-order partial differential equation which can be solved with
the method of characteristics. The physical interpretation of the solution is discussed in
section 4.

2. Brief review of the entangled state representation

Similar to EPR’s original idea that two particles’ relative position operator commutes with
their total momentum operator, two particles’ coordinate operator sum Q1 +Q2 also commutes
with their relative momentum operator, i.e. [Q1 + Q2, P1 − P2] = 0, and we can set up their
common un-normalized eigenvector of continuous variable in the two-mode Fock space [7],
i.e.

|ξ 〉〉 = exp
[
ξa

†
1 + ξ ∗a†

2 − a
†
1a

†
2

]|00〉 ξ = ξ1 + iξ2 (2.1)

where the a
†
1-mode (a

†
2-mode) is the creation operator in the Fock space; ξ is a complex

number whose real and imaginary parts are indeed the eigenvalues of Q1 + Q2 and P1 − P2,

respectively,

(Q1 + Q2)|ξ 〉〉 =
√

2ξ1|ξ 〉〉 (P1 − P2)|ξ 〉〉 =
√

2ξ2|ξ 〉〉. (2.2)

By using |00〉〈00| =: exp
(−a

†
1a1 − a

†
2a2

)
:, and the technique of integral within an order

product (IWOP) of operators [11] we can prove the completeness relation of |ξ 〉〉,∫
d2ξ

π
e−|ξ |2 |ξ 〉〉〈〈ξ | =

∫
d2ξ

π
: exp

(−|ξ |2 + ξa
†
1 + ξ ∗a

†

2 − a
†
1a

†

2

+ ξ ∗a1 + ξa2 − a1a2 − a
†
1a1 − a

†
2a2

)
:= 1. (2.3)

Thus |ξ 〉〉 is qualified to be a quantum mechanical representation, and the following properties
can be easily obtained from (2.1),

〈〈ξ |a†
1 =

(
ξ ∗ − ∂

∂ξ

)
〈〈ξ | 〈〈ξ |a1 = ∂

∂ξ ∗ 〈〈ξ |

〈〈ξ |a†
2 =

(
ξ − ∂

∂ξ ∗

)
〈〈ξ | 〈〈ξ |a2 = ∂

∂ξ
〈〈ξ |.

(2.4)

In the next section, we show that the dynamics of the generalized parametric amplifier can be
solved in the entangled state representation 〈〈ξ |.

3. Solution of the Schrödinger equation for the generalized parametric amplifier

The Hamiltonian of the generalized parametric amplifier is actually a two-mode forced
quantum oscillator with the parametric down-conversion interaction, i.e.
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H = H1 + H2 (3.1)

H1 = ω′(a†
1a1 + a

†
2a2 + 1

)
+

√
2λX1 cos ω1t +

√
2σX2 cos ω2t

Xi = (
a
†
i + ai

)/√
2 i = 1, 2

(3.2)

H2 = g
(
a
†
1a

†
2 exp(−i2ω0t) + a1a2 exp(i2ω0t)

)
g = ω′ − ω0 (3.3)

where H1 describes a two-mode forced quantum oscillator,
√

2λX1 cos ω1t and
√

2σX2 cos ω2t

are the classical forces; H2 describes the classical pump mode at frequency 2ω0 interacting in
a nonlinear optical medium with two modes at the same frequency ω′, the coupling constant
g is proportional to the second-order susceptibility of the medium and to the amplitude of
the pump. It is possible to adjust the pump-mode frequency and/or the ω′-mode frequency
such that ω′ = g + ω0, this is named in resonant case. Our aim is to demonstrate that,
although (3.1)–(3.3) is more complicated than (1.1), such a time-dependent Hamiltonian can
be exactly solved in terms of the entangled state representation. For this purpose, we rewrite
(3.1)–(3.3) as

H = H0 + H ′ H0 = ω0
(
a
†
1a1 + a

†
2a2 + 1

)
H ′ = λ

(
a
†
1 + a1

)
cos ω1t + σ

(
a
†
2 + a2

)
cos ω2t (3.4)

+ g
(
a
†
1 exp(−iω0t) + a2 exp(iω0t)

)(
a1 exp(iω0t) + a

†
2 exp(−iω0t)

)
.

Turning to the interaction picture, we have the Schrödinger equation

i
∂

∂t
|�(t)〉I = exp(iH0t)H

′ exp(−iH0t)|�(t)〉I
= [

λ
(
a
†
1 exp(iω0t) + a1 exp(−iω0t)

)
cos ω1t + σ

(
a
†
2 exp(iω0t)

+ a2 exp(−iω0t)
)

cos ω2t + g
(
a
†
1 + a2

)(
a1 + a

†
2

)]|�(t)〉I . (3.5)

Projecting (3.5) on the entangled state basis 〈〈ξ | and introducing

�I(ξ, ξ ∗, t) ≡ 〈〈ξ |�(t)〉I (3.6)

as well as using (2.4) we have

(−λ exp(iω0t) cos ω1t + σ exp(−iω0t) cos ω2t)
∂�I

∂ξ

+ (λ exp(−iω0t) cos ω1t − σ exp(iω0t) cos ω2t)
∂�I

∂ξ ∗ − i
∂�I

∂t

= − [
(λξ ∗ cos ω1t + σξ cos ω2t) exp(iω0t) + g |ξ |2] �I (3.7)

which involves an unknown function �I and three independent variables ξ, ξ ∗ and t. We see
that though the bilinear terms

(
a
†
1 + a2

) (
a1 + a

†
2

)
exist in (3.5), in the 〈〈ξ | representation (3.7)

is just a first-order partial differential equation, so it can be solved with the aid of the method
of characteristics4 [12].

The characteristic equations for (3.7) are

dξ

R(t)
= dt

−i
R(t) ≡ −λ exp(iω0t) cos ω1t + σ exp(−iω0t) cos ω2t (3.8)

dξ ∗

R∗(t)
= dt

i
(3.9)

4 There is a concise introduction about the method of characteristics in [12].
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d�I

S(ξ, ξ ∗, t, �I )
= dt

−i

S(ξ, ξ ∗, t, �I ) ≡ −[(λξ ∗ cos ω1t + σξ cos ω2t) exp(iω0t) + g |ξ |2]�I .

(3.10)

Equations (3.9) and (3.8) are conjugated to each other, so we only need to consider the solution
of (3.8). It is easily seen that the solution to (3.8) is

ξ ≡ A − α(t) (3.11)

where A is an integration constant, and

α(t) ≡ α1(t) + α∗
2

(
t
)

α1(t) ≡
[

exp(iω1t)

ω0 + ω1
+

exp(−iω1t)

ω0 − ω1

]
λ exp(iω0t)

2

α2(t) ≡
[

exp(iω2t)

ω0 + ω2
+

exp(−iω2t)

ω0 − ω2

]
σ exp(iω0t)

2
.

(3.12)

Substituting (3.11) into (3.10) and taking into account the following equations

λ exp(iω0t) cos ω1t = −i
dα1

dt
σ exp(iω0t) cos ω2t = −i

dα2

dt
(3.13)

which are deduced from (3.12), we have

d ln �I

dt
= −dα1

dt
(A∗ − α∗) − dα2

dt
(A − α) − ig(A − α)(A∗ − α∗). (3.14)

Integrating (3.14) yields

ln �I − ln C = −igtAA∗ + A

[
ig

∫
α∗ dt − α2

]
+ A∗

[
ig

∫
α dt − α1

]

− ig
∫

αα∗ dt + α1α2 +
∫ (

α∗
1

dα1

dt
+ α∗

2
dα2

dt

)
dt. (3.15)

Here, we have absorbed all the integration constants arising from the indefinite integrations∫
α dt,

∫
α∗ dt,

∫
αα∗ dt and

∫ (
α∗

1
dα1
dt

+ α∗
2

dα2
dt

)
dt into C. Integrating the right-hand side of

(3.15) and replacing the integration constants A and A∗ by ξ and ξ ∗ according to (3.11), we
obtain

ln �I − ln C = βξξ ∗ + γ ξ + δξ ∗ + ε (3.16)

where β, γ, δ, ε are defined as

β(t) ≡ −igt

γ (t) ≡ −α2 − igtα∗ + ig
∫

α∗ dt

δ(t) ≡ −α1 − igtα + ig
∫

α dt

ε(t) ≡ −α1α2 −
∫ (

α1
dα∗

1

dt
+ α2

dα∗
2

dt

)
dt

+ ig

[
−tαα∗ + α

∫
α∗ dt + α∗

∫
α dt −

∫
αα∗ dt

]
.

(3.17)

From (3.16), we derive

C = �I exp(−βξξ ∗ − γ ξ − δξ ∗ − ε) ≡ v(�I , ξ, ξ ∗, t). (3.18)
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v(�I , ξ, ξ ∗, t) and u(ξ, t) ≡ ξ + α = A are two independent integral constants of the
characteristic equations. According to the method of characteristics, we need a specific
function F(u, v) = 0 to match with (3.7). Without loss of generality, we assume that F(u, v)

has the form

F(u, v) = v − f (u) = 0 (3.19)

where f is a specific function which can be determined as follows. Noting that when
σ = 0, λ = 0, g = 0, the time-dependent parameters α1,α2, β, γ, δ, ε all come to zero, and
the system reduces to a two-mode simple harmonic oscillator whose eigenstate vector is

|n1, n2〉 = a
†n1
1 a

†n2
2√

n1!n2!
|00〉 (3.20)

in this case

u → ξ v → �I ≡ 〈〈ξ |�(t)〉I = 〈〈ξ |n1, n2〉. (3.21)

Substituting (3.21) into (3.19) we know

f (ξ) = 〈〈ξ |n1, n2〉. (3.22)

Thus the form of f (u) is

f (u) = 〈〈u|n1, n2〉. (3.23)

So, from (3.19), (3.18) and (3.23) we deduce

�I = 〈〈ξ |�(t)〉I = exp(βξξ ∗ + γ ξ + δξ ∗ + ε)〈〈ξ + α|n1, n2〉 (3.24)

which is the exact solution of (3.7). From (3.1), (3.2), we see that the physical implementation
of the calculation is based on a set-up of the usual non-degenerate parametric amplifier,
described by ω′(a†

1a1 + a
†
2a2 + 1

)
+ g

(
a
†
1a

†
2 exp(−i2ω0t) + a1a2 exp(i2ω0t)

)
, influenced by two

external periodic electric fields Ei ∼ ai +a
†
i , i = 1, 2. Because the coupling g is proportional to

the second-order susceptibility of the nonlinear medium and to the amplitude of the pump, one
can either choose the medium or adjust the pump intensity to maintain the resonant condition
g = ω′ − ω0.

4. Physical interpretation

Using the completeness relation of 〈〈ξ | shown in (2.3) and we can derive the corresponding
state vector for (3.24),

|�(t)〉I =
∫

d2ξ

π
e−|ξ |2 |ξ 〉〉〈〈ξ |�(t)〉I

=
∫

d2ξ

π
e−|ξ |2 |ξ 〉〉 exp(βξξ ∗ + γ ξ + δξ ∗ + ε)〈〈ξ + α| n1, n2〉

= exp
[
β
(
a1 + a

†
2

)(
a
†
1 + a2

)
+ γ

(
a1 + a

†
2

)
+ δ

(
a
†
1 + a2

)
+ ε

]
exp[a1α

∗ + a2α]|n1, n2〉
= exp[ε + γ δ] exp

[
β
(
a1 + a

†
2

)(
a
†
1 + a2

)]
exp

[
δa

†
1 + γ a

†
2

]
× exp[(γ + α∗)a1 + (δ + α)a2]|n1, n2〉. (4.1)

In order to see its physical meaning more clearly, we further put exp
[
β
(
a1 + a

†
2

)(
a
†
1 + a2

)]
in

its normal ordering form by virtue of the technique of integral within an ordered product of
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operators [11],

exp
[
β
(
a1 + a

†
2

)(
a
†
1 + a2

)] =
∫

d2ξ

π
exp(−(1 − β) |ξ |2)|ξ 〉〉〈〈ξ |

=
∫

d2ξ

π
: exp

[−(1 − β) |ξ |2

+ ξ
(
a
†
1 + a2

)
+ ξ ∗(a1 + a

†
2

) − (
a
†
1 + a2

)(
a1 + a

†
2

)]
:

= :
1

1 − β
exp

[
β
(
a
†
1 + a2

)(
a1 + a

†
2

)
1 − β

]
: . (4.2)

When n1 = 0, n2 = 0, (4.1) becomes

|�(t)〉I = exp[ε + γ δ] :

(
1

1 − β

)
exp

[
β
(
a
†
1 + a2

)(
a1 + a

†
2

)
1 − β

]
: |δ, γ 〉

= 1

1 − β
exp[ε + γ δ] exp

[
β
(
a
†
1 + γ

)(
δ + a

†
2

)
1 − β

]
|δ, γ 〉 (4.3)

where |δ, γ 〉 ≡ exp
[
δa

†
1 + γ a

†
2

]|0, 0〉 is the two-mode un-normalized coherent state.

Equation (4.3) shows that due to the existence of βa
†
1a

†
2

/
(1−β), β(t) ≡ −igt , the Schrödinger

state vector is a squeezed coherent state. In particular, if the parameter g in H, which represents
the parametric amplifier interaction, is zero, then H2 = 0; from (3.17), we see that (4.1) reduces
to the solution for the two forced quantum oscillators

|�(t)〉I = |φ(t)〉1 ⊗ |φ(t)〉2 (4.4)

where

|φ(t)〉i = exp

[
−

∫
αi

dα∗
i

dt
dt +

1

2
αiα

∗
i

]
exp

[−αia
†
i + α∗

i ai

]|ni〉. (4.5)

Let D(−αi) = exp
[−αia

†
i + α∗

i ai

]
be the displacement operator, then

|φ(t)〉i = exp

[
−

∫
αi

dα∗
i

dt
dt +

1

2
αiα

∗
i

]
D(−αi)|ni〉. (4.6)

D(−αi)|ni〉 is a displaced Fock state, and can be further expressed as

D(−αi)|ni〉 = 1√
ni!

(
a
†
i + α∗

i

)ni |−αi〉. (4.7)

|−αi〉 is a normalized coherent state [13, 14], which coincides with the conclusion about
forced quantum oscillators in [8].

In summary, we have shown that the dynamics of two forced quantum oscillators with
parametric down-conversion interaction in the resonant case can be exactly solved by virtue of
the entangled state representation. This dynamics is directly leading to production of squeezed
coherent states.The convenience and efficiency of working in this representation lies in that
the Schrödinger equation is reduced to a first-order partial differential equation which can
be solved through the method of characteristics. Thus this work together with [15], where
the entangled states are employed to deal with master equations, exhibits the merit of the
entangled state representation used in the quantum optics theory.
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